Dejean's conjecture and letter frequency

نویسندگان

  • Jérémie Chalopin
  • Pascal Ochem
چکیده

We prove two cases of a strong version of Dejean’s conjecture involving extremal letter frequencies. The results are that there exist an infinite “ 5 4 + ” -free word over a 5 letter alphabet with letter frequency 1 6 and an infinite “ 6 5 + ” -free word over a 6 letter alphabet with letter frequency 1 5 . 1991 Mathematics Subject Classification. 68R15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proof of Dejean's conjecture

We prove Dejean’s conjecture. Specifically, we show that Dejean’s conjecture holds for the last remaining open values of n, namely 15 ≤ n ≤ 26.

متن کامل

Dejean's conjecture and Sturmian words

Dejean conjectured that the repetition threshold of a k-letter alphabet is k/(k−1), k = 3, 4. Values of the repetition threshold for k < 5 were found by Thue, Dejean and Pansiot. Moulin-Ollagnier attacked Dejean’s conjecture for 5 ≤ k ≤ 11. Building on the work of Moulin-Ollagnier, we propose a method for deciding whether a given Sturmian word with quadratic slope confirms the conjecture for a ...

متن کامل

Letter frequency in infinite repetition-free words

We estimate the extremal letter frequency in infinite words over a finite alphabet avoiding some repetitions. For ternary square-free words, we improve the bounds of Tarannikov on the minimal letter frequency, and prove that the maximal letter frequency is 255 653 . Kolpakov et al. have studied the function ρ such that ρ(x) is the minimal letter frequency in an infinite binary x-free word. In p...

متن کامل

Unequal letter frequencies in ternary square-free words

We consider the set S of triples (x, y, z) corresponding to the frequency of each alphabet letter in some infinite ternary square-free word (so x + y+ z = 1). We conjecture that this set is convex. We obtain bounds on S by with a generalization of our method to bound the extremal frequency of one letter. This method uses weights on the alphabet letters. Finally, we obtain positive results, that...

متن کامل

Dejean's conjecture holds for n>=27

We show that Dejean’s conjecture holds for n ≥ 27. This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible. Repetitions in words have been studied since the beginning of the previous century [14, 15]. Recently, there has been much interest in repetitions with fractional exponent [1, 3, 6, 7, 8, 10]. For rational 1 < r ≤...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ITA

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2007